
PROFICY iFIX
HMI/SCADA

Simulation 2 Driver

PROFICY®SOFTWARE & SERVICES

Proprietary Notice
The information contained in this publication is believed to be accurate and reliable.
However, GE Vernova assumes no responsibilities for any errors, omissions or
inaccuracies. Information contained in the publication is subject to change without notice.

No part of this publication may be reproduced in any form, or stored in a database or
retrieval system, or transmitted or distributed in any form by any means, electronic,
mechanical photocopying, recording or otherwise, without the prior written permission of
GE Vernova. Information contained herein is subject to change without notice.

© 2024 GE Vernova and/or its affiliates. All rights reserved.

Trademark Notices
“GE VERNOVA” is a registered trademark of GE Vernova. The terms “GE” and the GE
Monogram are trademarks of the General Electric Company, and are used with permission.

Microsoft® is a registered trademark of Microsoft Corporation, in the United States and/or
other countries.

All other trademarks are the property of their respective owners.

We want to hear from you. If you have any comments, questions, or suggestions about our
documentation, send them to the following email address:
doc@ge.com

Table of Contents

Simulation 2 Driver 2

SM2 Driver Features 3

Accessing SM2 Registers 5

To use the SM2 register: 5

Generating Bad Data 6

Using the SM2 C API 7

Example 7

Understanding Alarm Statuses 11

Index 13

© 2024 General Electric Company. All rights reserved. i

© 2024 General Electric Company. All rights reserved. 1

Simulation 2 Driver

The Simulation 2 (SM2) driver provides a matrix of addresses that lets you test your process database to
learn how its block and chains respond to different conditions. You can also use the SM2 driver with a C
application to extract data from legacy systems and store it in a process database.

The SM2 driver has no driver configuration program so no configuration of the driver is required. Instead,
you specify the SM2 address you want to use in a database block's I/O Address field and then place the
block on scan. To learn more about using SM2 addresses, refer to Accessing SM2 Registers.

The SM2 driver supports the following HMI software products:

 l FIX for Windows NT version 6.15 or greater.

 l iFIX version 2.5 or greater.

2 © 2024 General Electric Company. All rights reserved.

SM2 Driver Features

The SM2 driver is similar to the SIM driver supplied with your FIX and iFIX software. Both drivers:

 l Provide a matrix of addresses that database blocks can read from and write to.

 l Support analog and digital database blocks.

 l Support text blocks.

However, the SM2 driver differs from the SIM driver in several important ways:

The SM2 driver... The SIM driver...
Provides three independent sets of
registers. Analog blocks automatically
access the analog registers, digital blocks
automatically use the digital registers, and
Text blocks automatically access the text
registers.

Provides one set of registers shared by both analog,
digital, and text blocks.

Changing a register in one set does not
change the same register in the other set.
For example, if you change the value of
the analog register 1000, the value of the
digital register 1000 is unchanged.

Changing an analog register in the SIM driver modifies the
register for analog, digital, and text reads. For example, if
you change the value of the analog register 1000, you also
modify the value of the same digital register.

Provides 20,000 analog, 20,000 16-bit
digital registers, and 20,000 text registers.

Provides 2000 analog and digital registers, a total of 32,000
bits.

Stores analog values in 64-bit floating
point registers, numbered 0 to 19999.
Incoming values are not scaled.

Stores analog values in 16-bit integer registers, numbered
0 to 2000. Incoming 32-bit values are scaled to 16-bit val-
ues (0 - 65535).

Digital values are stored in 16-bit integer
registers, numbered 0 to 19999.

Digital values are stored in 16-bit integer registers,
numbered 0 to 2000.

Text values are stored in 8-bit registers
numbered 0 to 19999. Each register holds
one text character for a total of 20,000
bytes of text.

Text values are stored in the same area as analog and
digital values, numbered 0 to 2000.

Provides a register to simulate com-
munication errors.

Cannot simulate communication errors. However, the SIM
driver does provide registers RA through RK and RX
through RZ to generate random numbers. For more inform-
ation, refer to the Using Signal Generation Registers in the
SIM Driver section Building a SCADA System electronic
book.

Supplies a C API that allows applications
to access SM2 analog, digital, and text val-
ues.

Does not support a C API for accessing SIM values.

Supports exception-based processing. Does not support exception-based processing.
Supports latched data for Analog Input,
Analog Alarm, Digital Input, Digital Alarm
and Text blocks when a simulated com-

Does not support latched data.

© 2024 General Electric Company. All rights reserved. 3

munication error is enabled.
Can read and write the individual alarm
status of each SM2 register.

Cannot read and write the individual alarm status of any
SIM register.

Does not provide alarm counters. Provides alarm counters that show the general alarm state
of a SCADA server. For more information, refer to the
Using Alarm Counters chapter of the Implementing Alarms
and Messages electronic book.

Obviously, you can use the SIM driver for many of the same tasks as the SM2 driver. However, you
may prefer to use the SM2 driver when one or more of the following conditions occur:

 l You have more test data than the SIM driver can hold.

 l You want to determine how the database responds to 32-bit values.

 l You need to access the driver from a C program.

4 © 2024 General Electric Company. All rights reserved.

Accessing SM2 Registers

The SM2 driver matrix consists of three independent sets of registers: one for analog values, one for
digital values, and one for text values. Analog database blocks read from and write to analog registers
only. Once a block writes a value, other analog blocks can read the value from the register written to.
Digital database blocks work the same way, reading and writing from the digital registers. FIX (or iFIX)
clears all SM2 values when FIX or iFIX starts.

The SM2 driver does not use the Hardware Options or Signal Conditioning fields.

 To use the SM2 register:
1. Enter SM2 in the primary block's Device field.

2. Complete the I/O Address field with the following syntax:

For Analog values: register

For Digital values: register:bit

For Text values: register

Analog Examples Digital Examples Text Examples
1000 5000:10 2000
16435 23:15 10000

SM2 Address Examples

© 2024 General Electric Company. All rights reserved. 5

Generating Bad Data

The SM2 driver provides an S register to simulate a communication error. Using this register, all analog
and digital reads return an error as if communication to the process hardware has been lost.

To use this feature, set the S register to 1.

NOTE: The SM2 driver latches data when a simulated communication error is enabled.

6 © 2024 General Electric Company. All rights reserved.

Using the SM2 C API

NOTE: You must have the iFIX Integration (EDA) Toolkit installed to use the C API.

You can access SM2 analog, digital, and text values through the C API that the driver supplies. The file
SM2API.H describes the API and the functions reside in the file SM2API.LIB. You can link this library
file to your C application to access the API's functions. You can find both files in your Base path. By
default, this path is C:\Program Files (x86)\Proficy\iFIX, C:\IFIX, or C:\Dynamics depending where you
installed iFIX.

Example
Suppose you are using the SM2 driver to store data from a legacy system. Using the C API and a num-
ber of preconfigured analog blocks, you can extract your data from the legacy system and store it in your
process database.

Syntax Values read, written, and returned
UINT16 GetAn-
alog(UINT16
index, FLOAT
*data);

GetAnalog reads an analog value (32-bit float) to the register indicated by 'index'.

FE_OK is returned if the operation succeeds.

FE_IO_ADDR is returned if the register index is out of range.

FE_RANGE is returned if the analog value exceeds the range of a 32-bit float.

NOTE: GetAnalog and GetDouble access the same table in the SM2.
UINT16 SetAn-
alog(UINT16
index, FLOAT
data);

SetAnalog writes an analog value (32-bit float) to the register indicated by 'index' and
causes an exception for the specified register even if the data has not changed.

FE_OK is returned if the operation succeeds.

FE_IO_ADDR is returned if the register index is out of range.

NOTE: SetAnalog and SetDouble access the same table in the SM2.
UINT16
GetDouble
(UINT16 index,
DOUBLE
*data);

GetDouble reads an analog value (64-bit float) to the register indicated by 'index.'

FE_OK is returned if the operation succeeds.

FE_IO_ADDR is returned if the register index is out of range.

NOTE: GetAnalog and GetDouble access the same table in the SM2.
UINT16
SetDouble
(UINT16 index,
DOUBLE data);

SetDouble writes an analog value (64-bit float) to the register indicated by 'index' and
causes an exception for the specified register even if the data has not changed.

FE_OK is returned if the operation succeeds.

FE_IO_ADDR is returned if the register index is out of range.

NOTE: SetAnalog and SetDouble access the same table in the SM2.
UINT16 GetDi-
gital(UINT16
index, UINT16

GetDigital reads 16 digital values (all 16 bits in one of the 20,000 digital registers) to
the register indicated by 'index'.

FE_OK is returned if the operation succeeds.

C API Functions

© 2024 General Electric Company. All rights reserved. 7

*data); FE_IO_ADDR is returned if the register index is out of range.

NOTE: The API can only read and write the entire 16 bit digital register at one time. If
you want to change 1 bit, you can read the register, modify the desired bit and write
the register. However, when you modify a single bit, ensure that only one thread in
one application is accessing a digital register at one time.

UINT16 SetDi-
gital(UINT16
index, UINT16
data);

SetDigital writes 16 digital values (all 16 bits in one of the 20,000 digital registers) to
the register indicated by 'index' and causes an exception for all 16 bits of the spe-
cified register even if the data has not changed.

FE_OK is returned if the operation succeeds.

FE_IO_ADDR is returned if the register index is out of range.

NOTE: The API can only read and write the entire 16 bit digital register at one time. If
you want to change 1 bit, you can read the register, modify the desired bit and write
the register. However, when you modify a single bit, ensure that only one thread in
one application is accessing a digital register at one time.

UINT16 SetDi-
gitalEx(UINT
index, UINT16
data, UINT16
mask)

SetDigitalEx writes 16 digital values (all 16 bits in one of the 20,000 digital registers)
to the register indicated by 'index' and causes an exception for specific bits selected
from a mask. An exception is triggered for the bits set in the mask even if the data
has not changed.

FE_OK is returned if the operation succeeds.

FE_IO_ADDR is returned if the register index is out of range.

NOTE: The API can only read and write the entire 16 bit digital register at one time. If
you want to change 1 bit, you can read the register, modify the desired bit and write
the register. However, when you modify a single bit, ensure that only one thread in
one application is accessing a digital register at one time.

UINT16
GetText
(UINT16 index,
char *data, int
size)

GetText reads the text specified by ̀ data' from text registers starting at the register
indicated by ̀ index'. The number of characters to read is indicated by ̀ size'. GetText
does not automatically add a null terminator to the text being read. If you require null-
terminated strings, make sure your program adds a null terminator after reading text.

FE_OK is returned if the operation succeeds.

FE_IO_ADDR is returned if the register index is out of range.
UINT16 SetText
(UINT16 index,
char *data, int
size)

SetText writes the text specified by ̀ data' to text registers starting at the register
indicated by ̀ index'. The number of characters to write is indicated by ̀ size'. Excep-
tion-based processing is not supported for text values. SetText does not auto-
matically add a null terminator to the text being written. If you require null-terminated
strings, make sure your program adds a null terminator prior to writing the text.

FE_OK is returned if the operation succeeds.

FE_IO_ADDR is returned if the register index is out of range.
UINT16
GetCommError
(UINT16 *data);

GetCommError reads the communication error flag to the S register. The flag is a 1 bit
integer value.

FE_OK is returned always.
UINT16 SetCommError writes the communication error flag to the S register. The flag is a 1-

8 © 2024 General Electric Company. All rights reserved.

SetCommError
(UINT16 data);

bit integer value. You should only pass 0 or 1 to the SetCommError function. Using
any other value can have unpredictable results.

FE_OK is returned always.
UINT16 GetAn-
alogAlarm
(UINT16 index,
INT16 *alm);

GetAnalogAlarm reads an alarm status from an analog register indicated by 'index'.
To learn more about available alarm statuses, refer to Understanding Alarm
Statuses.

NOTE: As of iFIX 4.5, only the alarm statuses IA_OK and IA_COMM are supported
for use through the SM2 driver.

FE_OK is returned if the operation succeeds.

FE_IO_ADDR is returned if the register index is out of range.
UINT16 SetAn-
alogAlarm
(UINT16 index,
INT16 alm);

SetAnalogAlarm writes an alarm status to an analog register indicated by 'index' and
causes an exception for the specified register even if the data or alarm has not
changed. To learn more about available alarm statuses, refer to Understanding Alarm
Statuses.

NOTE: As of iFIX 4.5, only the alarm statuses IA_OK and IA_COMM are supported
for use through the SM2 driver.

FE_OK is returned if the operation succeeds.

FE_IO_ADDR is returned if the register index is out of range.
UINT16 GetDi-
gitalAlarm
(UINT16 index,
INT16 *alm);

GetDigitalAlarm reads an alarm status from a digital register indicated by 'index'. To
learn more about available alarm statuses, refer to Understanding Alarm Statuses.

NOTE: As of iFIX 4.5, only the alarm statuses IA_OK and IA_COMM are supported
for use through the SM2 driver.

FE_OK is returned if the operation succeeds.

FE_IO_ADDR is returned if the register index is out of range.
UINT16 SetDi-
gitalAlarm
(UINT16 index,
INT16 alm);

SetDigitalAlarm writes an alarm status to a digital register indicated by 'index' and
causes an exception even if the data or alarm has not changed. The same alarm is
associated with all 16 bits in the digital register. To learn more about available alarm
statuses, refer to Understanding Alarm Statuses.

NOTE: As of iFIX 4.5, only the alarm statuses IA_OK and IA_COMM are supported
for use through the SM2 driver.

FE_OK is returned if the operation succeeds.

FE_IO_ADDR is returned if the register index is out of range.
UINT16 GetTex-
tAlarm(UINT16
index INT16
alm)

GetTextAlarm reads an alarm status from a text register indicated by ̀ index'. To learn
more about available alarm statuses, refer to Understanding Alarm Statuses.

NOTE: As of iFIX 4.5, only the alarm statuses IA_OK and IA_COMM are supported
for use through the SM2 driver.

FE_OK is returned if the operation succeeds.

FE_IO_ADDR is returned if the register index is out of range.
UINT16 SetTex- SetTextAlarm writes an alarm status to a text register indicated by 'index'. When a

© 2024 General Electric Company. All rights reserved. 9

tAlarm(UINT16
index, INT16
alm)

block reads data from the SM2 driver, the alarm status of the first byte is returned.
The status of additional bytes is ignored. To learn more about available alarm
statuses, refer to Understanding Alarm Statuses.

NOTE: As of iFIX 4.5, only the alarm statuses IA_OK and IA_COMM are supported
for use through the SM2 driver.

FE_OK is returned if the operation succeeds.

FE_IO_ADDR is returned if the register index is out of range.

10 © 2024 General Electric Company. All rights reserved.

Understanding Alarm Statuses

iFIX and FIX can process alarm status information from I/O drivers. This information complements the
alarms generated by iFIX and FIX database blocks. When an alarm is returned from a driver, iFIX and
FIX compares the driver alarm against the block alarm. The alarm with the higher severity is used as the
block alarm and the other alarm is ignored.

NOTE: As of iFIX 4.5, only the alarm statuses IA_OK and IA_COMM are supported for use through the SM2
driver.

iFIX defines the following alarms with the following severity:

Severity Alarm Status Description
16 (highest) IA_COMM Communication error ("BAD" value).
16 (highest) IA_IOF General I/O failure.
16 (highest) IA_OCD Open circuit.
16 (highest) IA_URNG Under range (clamped at 0).
16 (highest) IA_ORNG Over range (clamped at MAX).
16 (highest) IA_RANG Out of range (value unknown).
16 (highest) IA_DEVICE Device failure.
16 (highest) IA_STATION Station failure.
16 (highest) IA_ACCESS Access denied (privilege).
16 (highest) IA_NODATA On poll, but no data yet.
16 (highest) IA_NOXDATA Exception item, but no data yet.
16 (highest) IA_MANL Special code for MANL/MAINT (for inputs).
8 IA_FLT Floating point error.
8 IA_ERROR General block error.
8 IA_ANY Any block alarm.
8 IA_NEW New block alarm.
7 IA_HIHI The block is in the HIHI alarm state (High High).
7 IA_LOLO The block is in the LOLO alarm state (Low Low).
7 IA_COS Change of state.
7 IA_CFN Change From Normal (Digital block only).
7 IA_TIME Time-out alarm.
7 IA_SQL_LOG Not connected to database.
6 IA_HI The block is in the HI alarm state (High).
6 IA_LO The block is in the LO alarm state (Low).
6 IA_RATE Value exceeds rate of change setting since last scan period.
6 IA_SQL_CMD SQL command not found or invalid.
5 IA_DEV Deviation from the set point.
5 IA_DATA_MATCH SQL command does not match data list.
4 IA_FIELD_READ Error reading tag values.

© 2024 General Electric Company. All rights reserved. 11

4 IA_FIELD_WRITE Error writing tag values.
1 IA_DSAB Alarms disabled.
0 (lowest) IA_OK The block is in normal state.

FIX defines the following alarms with the following severity:

Severity Alarm Status Description
16 (highest) IA_COMM Communication error ("BAD" value).
7 IA_HIHI The block is in the HIHI alarm state (High High).
7 IA_LOLO The block is in the LOLO alarm state (Low Low).
7 IA_CFN Change From Normal (Digital block only).
6 IA_HI The block is in the HI alarm state (High).
6 IA_LO The block is in the LO alarm state (Low).
6 IA_RATE Value exceeds rate of change setting since last scan period.
5 IA_DEV Deviation from the set point.
0 (lowest) IA_OK The block is in normal state.

Using the preceding tables, you can see that if a driver returns a HIHI alarm to a block that is in HI alarm,
iFIX or FIX changes the alarm state to HIHI because the driver alarm is more severe. However, if the
alarms are of equal severity, iFIX or FIX does not change the alarm state of the block. For example, if
the block is in HI alarm and the driver returns a LO alarm, the block's alarm state does not change
because both alarms have equal severity. Once an operator acknowledges the HI alarm, iFIX or FIX
changes the block's alarm state.

NOTE: If you set a communication error to the S register with the SetCommError function, then all SM2
registers show a COMM alarm status. When examining the alarm status of text, only the status of the first char-
acter (byte) is read. You can control the alarm status functions of the SM2 driver using its C API only. Refer
more information about this API, refer to the Using the SM2 C API section.

12 © 2024 General Electric Company. All rights reserved.

Index

A

accessing SM2 registers 5

addresses 4

alarm status list 10

analog blocks 2, 7

C

communication errors 5

connecting to the database 4

D

digital blocks 3, 6

E

exception-based processing 3

F

features 3

G

generating bad data 6

I

introducing the Simulation 2 Driver 1

L

latched data 3, 5-6

S

S register 6

SIM driver 3

simulating communication errors 2, 5

SM2 driver 3

addresses 4

compared to SIM driver 2

exception-based processing support 2

features 3

when to use 2

SM2 features 2

T

text blocks 3, 6

U

understanding alarm statuses 11

© 2024 General Electric Company. All rights reserved. 13

	Cover Page
	Table of Contents
	Simulation 2 Driver
	SM2 Driver Features
	Accessing SM2 Registers
	To use the SM2 register:

	Generating Bad Data
	Using the SM2 C API
	bookmark1

	Understanding Alarm Statuses
	Index

